skip to main content


Search for: All records

Creators/Authors contains: "Artemyev, Anton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present particle-in-cell simulations of a combined whistler heat flux and temperature anisotropy instability that is potentially operating in the solar wind. The simulations are performed in a uniform plasma and initialized with core and halo electron populations typical of the solar wind beyond about 0.3 au. We demonstrate that the instability produces whistler-mode waves propagating both along (anti-sunward) and opposite (sunward) to the electron heat flux. The saturated amplitudes of both sunward and anti-sunward whistler waves are strongly correlated with their initial linear growth rates,Bw/B0(γ/ωce)ν, where for typical electron betas we have 0.6 ≲ν≲ 0.9. We show that because of the relatively large spectral width of the whistler waves, the instability saturates through the formation of quasi-linear plateaus around the resonant velocities. The revealed correlations of whistler wave amplitudes and spectral widths with electron beta and temperature anisotropy are consistent with solar wind observations. We show that anti-sunward whistler waves result in an electron heat flux decrease, while sunward whistler waves actually lead to an electron heat flux increase. The net effect is the electron heat flux suppression, whose efficiency is larger for larger electron betas and temperature anisotropies. The electron heat flux suppression can be up to 10%–60% provided that the saturated whistler wave amplitudes exceed about 1% of the background magnetic field. The experimental applications of the presented results are discussed.

     
    more » « less
  2. Abstract

    Shock waves are sites of intense plasma heating and charged particle acceleration. In collisionless solar wind plasmas, such acceleration is attributed to shock drift or Fermi acceleration but also to wave–particle resonant interactions. We examine the latter for the case of electrons interacting with one of the most commonly observed wave modes in shock environments, the whistler mode. Such waves are particularly intense in dynamic, localized regions upstream of shocks, arising from the kinetic interaction of the shock with solar wind discontinuities. These regions, known as foreshock transients, are also sites of significant electron acceleration by mechanisms not fully understood. Using in situ observations of such transients in the Earth’s foreshock, we demonstrate that intense whistler-mode waves can resonate nonlinearly with >25 eV solar wind electrons and accelerate them to ∼100–500 eV. This acceleration is mostly effective for the 50–250 eV energy range, where the accelerated electron population exhibits a characteristic butterfly pitch-angle distribution consistent with theoretical predictions. Such nonlinear resonant acceleration is very fast, implying that this mechanism may be important for injecting suprathermal electrons of solar wind origin into the shock region, where they can undergo further, efficient shock-drift acceleration to even higher energies.

     
    more » « less
  3. Abstract

    Sub‐auroral polarization streams (SAPS) are one of the most intense manifestations of magnetosphere‐ionosphere coupling. Magnetospheric energy transport to the ionosphere within SAPS is associated with Poynting flux and the precipitation of thermal energy (0.03–30 keV) plasma sheet particles. However, much less is known about the precipitation of high‐energy (≥50 keV) ions and electrons and their contribution to the low‐altitude SAPS physics. This study examines precipitation within one SAPS event using a combination of equatorial THEMIS and low‐altitude DMSP and ELFIN observations, which, jointly, cover from a few eV up to a few MeV energy range. Observed SAPS are embedding the ion isotropy boundary, which includes strong 300–1,000 keV ion precipitation. SAPS are associated with intense precipitation of relativistic electrons (≤3 MeV), well equatorward of the electron isotropy boundary. Such relativistic electron precipitation is likely due to electron scattering by electromagnetic ion cyclotron waves at the equator.

     
    more » « less
  4. Free, publicly-accessible full text available April 28, 2024
  5. Accepted, not yet published 
    more » « less
  6. Abstract

    Thermalization and heating of plasma flows at shocks result in unstable charged-particle distributions that generate a wide range of electromagnetic waves. These waves, in turn, can further accelerate and scatter energetic particles. Thus, the properties of the waves and their implication for wave−particle interactions are critically important for modeling energetic particle dynamics in shock environments. Whistler-mode waves, excited by the electron heat flux or a temperature anisotropy, arise naturally near shocks and foreshock transients. As a result, they can often interact with suprathermal electrons. The low background magnetic field typical at the core of such transients and the large wave amplitudes may cause such interactions to enter the nonlinear regime. In this study, we present a statistical characterization of whistler-mode waves at foreshock transients around Earth’s bow shock, as they are observed under a wide range of upstream conditions. We find that a significant portion of them are sufficiently intense and coherent (narrowband) to warrant nonlinear treatment. Copious observations of background magnetic field gradients and intense whistler wave amplitudes suggest that phase trapping, a very effective mechanism for electron acceleration in inhomogeneous plasmas, may be the cause. We discuss the implications of our findings for electron acceleration in planetary and astrophysical shock environments.

     
    more » « less
  7. Abstract

    Electromagnetic ion cyclotron (EMIC) waves lead to rapid scattering of relativistic electrons in Earth's radiation belts, due to their large amplitudes relative to other waves that interact with electrons of this energy range. A central feature of electron precipitation driven by EMIC waves is deeply elusive. That is, moderate precipitating fluxes at energies below the minimum resonance energy of EMIC waves occur concurrently with strong precipitating fluxes at resonance energies in low‐altitude spacecraft observations. This paper expands on a previously reported solution to this problem: nonresonant scattering due to wave packets. The quasi‐linear diffusion model is generalized to incorporate nonresonant scattering by a generic wave shape. The diffusion rate decays exponentially away from the resonance, where shorter packets lower decay rates and thus widen the energy range of significant scattering. Using realistic EMIC wave packets fromδfparticle‐in‐cell simulations, test particle simulations are performed to demonstrate that intense, short packets extend the energy of significant scattering well below the minimum resonance energy, consistent with our theoretical prediction. Finally, the calculated precipitating‐to‐trapped flux ratio of relativistic electrons is compared to ELFIN observations, and the wave power spectra is inferred based on the measured flux ratio. We demonstrate that even with a narrow wave spectrum, short EMIC wave packets can provide moderately intense precipitating fluxes well below the minimum resonance energy.

     
    more » « less