skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Artemyev, Anton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Current sheets are quasi‐1D layers of strong current density, which play a crucial role in storing magnetic field energy and subsequently releasing it through charged particle acceleration and plasma heating. They are observed in planetary magnetospheres and solar wind flows, where they are also known as solar wind discontinuities. Despite significant variations in plasma parameters across different magnetospheres and the solar wind, current sheet configurations can remain fundamentally similar. In this study, we analyze current sheets observed in various regions, including the near‐Earth (within 30 Earth radii) and distant (50–200 Earth radii) magnetotail, Earth's dayside and nightside magnetosheath, the near‐Earth solar wind, and Martian and Jovian magnetotails. We examine three key plasma parameters: the plasma beta (ratio of plasma to magnetic pressure), the Alfvénic Mach number (ratio of plasma bulk flow speed to Alfvén speed in the current sheet reference frame), and the ion to electron temperature ratio. Additionally, we investigate the kinetic, thermal, and magnetic field energy densities. Our cross‐system analysis demonstrates that the same current sheet configuration can exist across a very wide parametric space spanning multiple orders of magnitude. We also highlight the distinct plasma environments of the Martian and Jovian magnetotails, characterized by large populations of heavy ions, emphasizing their significance in comparative magnetospheric studies. 
    more » « less
  2. Abstract Nonlinear interactions between electrons and whistler‐mode chorus waves play an important role in driving electron precipitation in Earth's radiation belts. In this letter, we employ the second fundamental model of the Hamiltonian approach to derive the inhomogeneity ratio, assessing nonlinear resonant interactions between nearly field‐aligned electrons and parallel propagating chorus waves. We perform test particle simulations by launching electrons from a high latitude to the equator, encountering counter‐streaming chorus waves. Our simulations reveal that anomalous scattering, encompassing anomalous trapping and positive bunching, extends the resonant location to the downstream of electrons. The comparison with test particle results demonstrates the efficacy of the inhomogeneity ratio in characterizing nonlinear interactions at small pitch angles. We emphasize the importance of applying this ratio specifically for small pitch angle electrons, as the previously provided inhomogeneity ratio significantly underestimates the impact of nonlinear interactions on electron precipitation. 
    more » « less
  3. Abstract Electron precipitation by chorus whistler‐mode waves generated by the same electron population is expected to play an important role in the dynamics of the outer radiation belt, potentially setting a hard upper limit on trapped energetic electron fluxes. Here, we statistically analyze the relationship between equatorial electron fluxes and the power of mid‐latitude cyclotron‐resonant chorus waves precipitating these electrons, both inferred from ELFIN low‐altitude energy and pitch‐angle resolved electron flux measurements in 2020–2022. We provide clear evidence of a flux limitation coinciding with an exponential increase of precipitation. We statistically demonstrate that the actual inferred resonant wave power gains are well correlated with theoretical linear gains, as in the classical Kennel‐Petschek model, for moderately high linear gains and high fluxes. However, we also find a finite occurrence of very high fluxes, corresponding to resonant waves of moderate average amplitude, implying a softer, more dynamical upper limit than traditionally envisioned. 
    more » « less
  4. Abstract Disturbances in ionospheric Total Electron Content (dTEC) with frequencies of 1–100 mHz can be driven from above by processes in the magnetosphere and below by processes on the Earth's surface and lower atmosphere. Past studies showed the potential of dTEC as a diagnostic of magnetospheric Ultra Low Frequency (ULF) wave activity and demonstrated that ULF dTEC can impact space weather by, for example, changing ionospheric conductance. However, most past work has focused on single event studies, lacked magnetospheric context, or used sampling rates too low to capture most ULF waves. Here, we perform a statistical study using Time History of Events and Macrsoscale Interactions during Substorms (THEMIS) satellite conjunctions with a ground‐based magnetometer and Global Navigation Satellite System (GNSS) receiver at 65° magnetic latitude. We find that magnetospheric ULF waves generate dTEC variations across the broad range of frequencies examined in this study (2–50 mHz), and that ULF dTEC wave power is correlated with Kp, AE, solar wind speed, and magnetic field wave power observed in the magnetosphere and on the ground. We further find that magnetospheric ULF waves generate dTEC amplitudes up to TECU ( background), with the largest amplitudes occurring during geomagnetically active conditions, at frequencies below 7 mHz, and at local times near midnight. We finally discuss the implications of our results for magnetosphere‐ionosphere coupling and remote sensing techniques related to ULF waves. 
    more » « less
  5. Abstract Electromagnetic ion cyclotron (EMIC) waves are important for Earth's inner magnetosphere as they can effectively drive relativistic electron losses to the atmosphere and energetic (ring current) ion scattering and isotropization. EMIC waves are generated by transversely anisotropic ion populations around the equatorial source region, and for typical magnetospheric conditions this almost always produces field‐aligned waves. For many specific occasions, however, oblique EMIC waves are observed, and such obliquity has been commonly attributed to the wave off‐equatorial propagation in curved dipole magnetic fields. In this study, we report that very oblique EMIC waves can be directly generated at the equatorial source region. Using THEMIS spacecraft observations at the dawn flank, we show that such oblique wave generation is possible in the presence of a field‐aligned thermal ion population, likely of ionospheric origin, which can reduce Landau damping of oblique EMIC waves and cyclotron generation of field‐aligned waves. This generation mechanism underlines the importance of magnetosphere‐ionosphere coupling processes in controlling wave characteristics in the inner magnetosphere. 
    more » « less
  6. Abstract Whistler‐mode chorus and hiss waves play an important role in Earth's radiation belt electron dynamics. Direct measurements of whistler wave‐driven electron precipitation and the resultant pitch angle distribution were previously limited by the insufficient resolution of low Earth orbit satellites. In this study, we use recent measurements from the Electron Losses and Fields INvestigation CubeSats, which provide energy‐ and pitch angle‐resolved electron distributions to statistically evaluate electron scattering properties driven by whistler waves. Our survey indicates that events with increasing precipitating‐to‐trapped flux ratios (evaluated at 63 keV unless otherwise specified) correlate with increasing trapped flux at energies up to ∼750 keV. Weak precipitation events (precipitation ratio <0.2) are evenly distributed, while stronger precipitation events tend to be concentrated atL > 5 over midnight‐to‐noon local times during disturbed geomagnetic conditions. These results are crucial for characterizing the whistler‐mode wave driven electron scattering properties and evaluating its impact on the ionosphere. 
    more » « less
  7. Abstract Electron cyclotron harmonic waves (ECH) play a key role in scattering and precipitation of plasma sheet electrons. Previous analysis on the resonant interaction between ECH waves and electrons assumed that these waves are generated by a loss cone distribution and propagate nearly perpendicular to the background magnetic field. Recent spacecraft observations, however, have demonstrated that such waves can also be generated by low energy electron beams and propagate at moderately oblique angles . To quantify the effects of this newly observed ECH wave mode on electron dynamics in Earth's magnetosphere, we use quasi‐linear theory to calculate the associated electron pitch angle diffusion coefficient. Utilizing THEMIS spacecraft measurements, we analyze in detail a few representative events of beam‐driven ECH waves in the plasma sheet and the outer radiation belt. Based on the observed wave properties and the hot plasma dispersion relation of these waves, we calculate their bounce‐averaged pitch angle, momentum and mixed diffusion coefficients. We find that these waves most efficiently scatter low‐energy electrons (10–500 eV) toward larger pitch angles, on time scales of to seconds. In contrast, loss‐cone‐driven ECH waves most efficiently scatter higher‐energy electrons (500 eV–5 keV) toward lower pitch‐angles. Importantly, beam‐driven ECH waves can effectively scatter ionospheric electron outflows out of the loss cone near the magnetic equator. As a result, these outflows become trapped in the magnetosphere, forming a near‐field‐aligned anisotropic electron population. Our work highlights the importance of ECH waves, particularly beam‐driven modes, in regulating magnetosphere‐ionosphere particle and energy coupling. 
    more » « less
  8. Abstract Although the effects of electromagnetic ion cyclotron (EMIC) waves on the dynamics of the Earth's outer radiation belt have been a topic of intense research for more than 20 years, their influence on rapid dropouts of electron flux has not yet been fully assessed. Here, we make use of contemporaneous measurements on the same ‐shell of trapped electron fluxes at 20,000 km altitude by Global Positioning System (GPS) spacecraft and of trapped and precipitating electron fluxes at 450 km altitude by Electron Losses and Fields Investigation (ELFIN) CubeSats in 2020–2022, to investigate the impact of EMIC wave‐driven electron precipitation on the dynamics of the outer radiation belt below the last closed drift shell of trapped electrons. During six of the seven selected events, the strong 1–2 MeV electron precipitation measured at ELFIN, likely driven by EMIC waves, occurs within 1–2 hr from a dropout of relativistic electron flux at GPS spacecraft. Using quasi‐linear diffusion theory, EMIC wave‐driven pitch angle diffusion rates are inferred from ELFIN measurements, allowing us to quantitatively estimate the corresponding flux drop based on typical spatial and temporal extents of EMIC waves. We find that EMIC wave‐driven electron precipitation alone can account for the observed dropout magnitude at 1.5–3 MeV during all events and that, when dropouts extend down to 0.5 MeV, a fraction of electron loss may sometimes be due to EMIC waves. This suggests that EMIC wave‐driven electron precipitation could modulate dropout magnitude above 1 MeV in the heart of the outer radiation belt. 
    more » « less
  9. Abstract The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra‐low‐frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground‐based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF‐modulated whistler‐mode waves. We observed peak‐to‐peak dTEC amplitudes reaching 0.5 TECU (1 TECU is equal to electrons/) with modulations spanning scales of 5–100 km. The cross‐correlation between our modeled and observed dTEC reached 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler‐mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high‐latitude dTEC generation from magnetospheric wave‐induced precipitation, addressing a significant gap in current physics‐based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere‐ionosphere coupling via ULF waves. 
    more » « less
  10. Abstract Electromagnetic ion cyclotron (EMIC) waves are known to be efficient for precipitating >1 MeV electrons from the magnetosphere into the upper atmosphere. Despite considerable evidence showing that EMIC‐driven electron precipitation can extend down to sub‐MeV energies, the precise physical mechanism driving sub‐MeV electron precipitation remains an active area of investigation. In this study, we present an electron precipitation event observed by ELFIN CubeSats on 11 January 2022, exclusively at sub‐MeV energy atL ∼ 8–10.5, where trapped MeV electrons were nearly absent. The THEMIS satellites observed conjugate H‐band and He‐band EMIC waves and hiss waves in plasmaspheric plumes near the magnetic equator. Quasi‐linear diffusion results demonstrate that the observed He‐band EMIC waves, with a high ratio of plasma to electron cyclotron frequency, can drive electron precipitation down to ∼400 keV. Our findings suggest that exclusive sub‐MeV precipitation (without concurrent MeV precipitation) can be associated with EMIC waves, especially in the plume region at highLshells. 
    more » « less